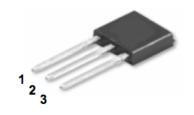
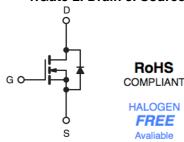


MSU4N60 600V N-Channel MOSFET


GENERAL DESCRIPTION

The MSU4N60 is a N-channel enhancement-mode MOSFET, providing the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost effectiveness. The TO-251 package is universally preferred for all commercial-industrial applications


FEATURES

- · Low On Resistance
- · Simple Drive Requirement
- · Low Gate Charge
- Fast Switching Characteristic
- · RoHS compliant / Halogen free package available

1.Gate 2. Drain 3. Source

Symbol	Parameter	Value	Units
$V_{ m DSS}$	Drain to Source Voltage	600	V
V_{GS}	Gate to Source Voltage	±30	V
I_{D}	Continuous Drain Current(@ $T_C = 25$ °C)	4.5	A
	Continuous Drain Current(@T _C = 100 °C)	2.6	A
I_{DM}	Drain Current Pulsed	18	A
E _{AS}	Single Pulsed Avalanche Energy	33	mJ
I_{AR}	Avalanche Current	4.0	A
E_{AR}	Repetitive Avalanche Energy	10	mJ
dv/dt	Peak Diode Recovery dv/dt	4.5	V/ns
$T_{\rm L}$	Maximum Temperature for Soldering @ Lead at 0.125 in(0.318mm) from	300	°C
	case for 10 seconds		
TPKG	Maximum Temperature for Soldering @ Package Body for 10 seconds	260	°C
P_{D}	Total Power Dissipation(@ $T_C = 25$ °C)	31	W
	Derating Factor above 25 °C	0.25	W/°C
T _{STG}	Operating Junction Temperature	- 55 ∼ 150	°C
T_{J}	Storage Temperature	150	°C

Note:

- 1.Repetitive rating; pulse width limited by maximum junction temperature.
- 2. IAS=4A, VDD=50V, L=8mH, VG=10V, starting TJ=+25°C.
- 3. ISD \leq 4A, dI/dt \leq 100A/ μ s, VDD \leq BVDSS, starting TJ=+25°C.

Thermal Characteristics

Symbol	Parameter	Value		Units	
		Min.	Тур.	Max.	
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	-	-	2.8	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	-	-	50.0	°C/W

Electrical Characteristics ($T_C = 25$ °C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Static Char	acteristics						
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$,	600	-	-	V	
		$I_D = 250 \text{ uA}$					
$\Delta BV_{DSS}\!/$	Breakdown Voltage Temperature	$I_D = 250 \text{ uA}$, referenced to 25 °C	-	0.60	-	V/°C	
$\Delta T_{\rm J}$	coefficient						
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{DS} = V_{GS},$	2.0	-	4.0	V	
		$I_D = 250 \text{ uA}$					
I_{DSS}	Drain-Source Leakage Current	$V_{DS} = 600 \text{ V},$	-	-	1	uA	
		$V_{GS} = 0 V$					
		$V_{DS} = 480 \text{ V},$	-	-	10	uA	
		$T_C = 125 ^{\circ}C$					
I_{GSS}	Gate-Source Leakage, Forward	VGS=±30	-	-	±100	nA	
$R_{DS(ON)} \\$	Static Drain-Source On-state	$V_{GS} = 10 \text{ V},$	-	2.0	25	Ω	
	Resistance	$I_D = 2.25 \text{ A}$					
Dynamic Cl	haracteristics						
Q_g	Total Gate Charge	ID=4.5A,	-	16	-		
Q_{gs}	Gate-Source Charge	VDD=480V,	-	2.5	-	nC	
Q_{gd}	Gate-Drain Charge (Miller Charge)	VGS=10V	-	6.5	-		
t _{d(on)}	Turn-on Delay Time	ID=4.5A,	-	10	30		
t _r	Rise Time	VDD=300V,	-	40	80		
$t_{d(off)}$	Turn-off Delay Time	VGS=10V	-	40	100	ns	
t_{f}	Fall Time	RG=25Ω	-	50	90		
C _{iss}	Input Capacitance		-	560	-		
C _{oss}	Output Capacitance	VGS=0V, VDS=25V, f=1MHz	-	55	-	pF	
C_{rss}	Reverse Transfer Capacitance	1	-	7	-		

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Source-Drain Diode							
VSD		IS=4.0A, VGS=0V	-	-	1.4	V	
IS		VD=VG=0,	-	-	4.0	A	
ISM		-	-	-	16	A	
trr		VGS=0, IF=4A, dI/dt=100A/us	-	270	-	ns	
Qrr			-	18	-	uC	

^{*}Pulse Test : Pulse Width ≤300μs, Duty Cycle≤2%

Brückewell

MSU4N60 600V N-Channel MOSFET

Characteristic Curves

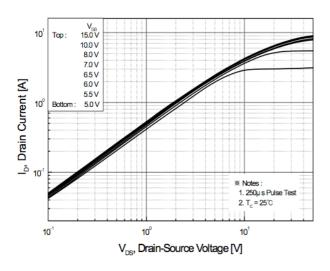


Figure 1. On Region Characteristics

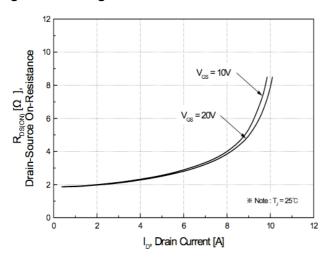


Figure 3. On Resistance Variation vs Drain Current and Gate Voltage

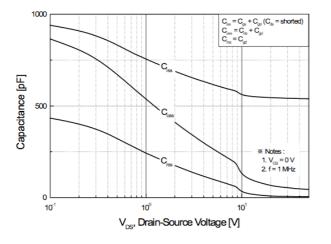


Figure 5. Capacitance Characteristics

Characteristic Curves

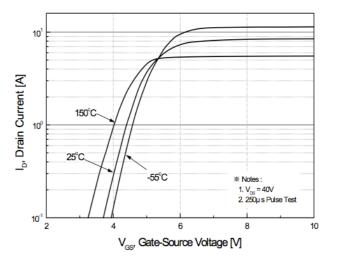


Figure 2. Transfer Characteristics

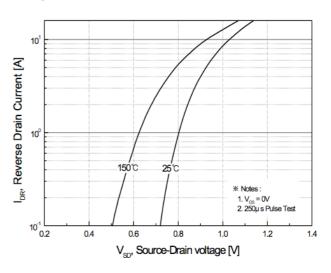


Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

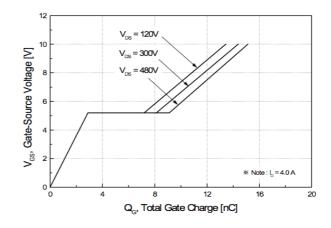
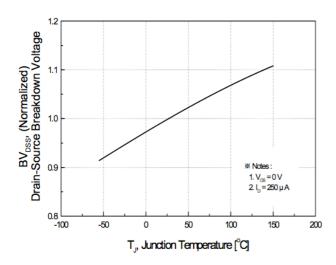



Figure 6. Gate Charge Characteristics

2.5 R_{DS(ON)}, (Normalized) Drain-Source On-Resistance 2.0 1.0 1. V_∞ = 10 V 2. I_D = 2.0 A 0.0 L -100 150 T_., Junction Temperature [°C]

Figure 7. Breakdown Voltage Variation vs. **Temperature**

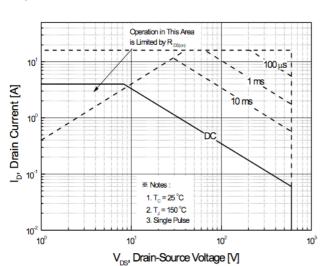


Figure 8. On-Resistance Variation vs. **Temperature**

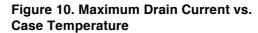



Figure 9. Maximum Safe Operating Area

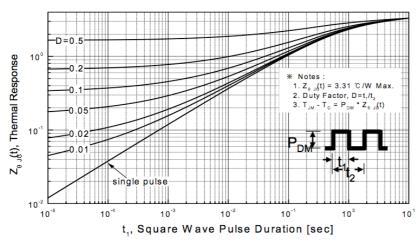


Figure 11. Transient Thermal Response Curve

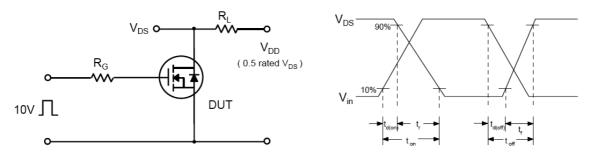


Fig 12. Resistive Switching Test Circuit & Waveforms

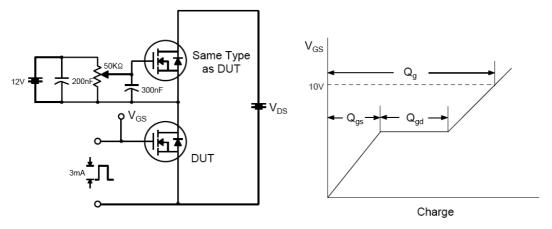


Fig 13. Gate Charge Test Circuit & Waveform

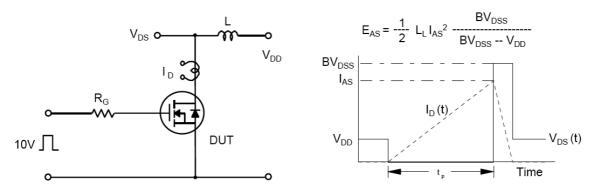


Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

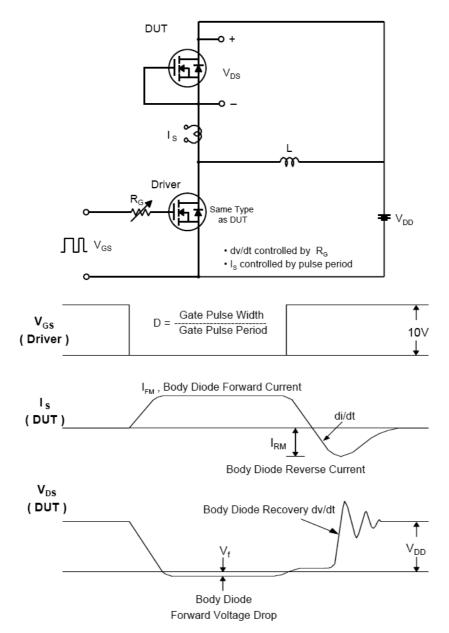
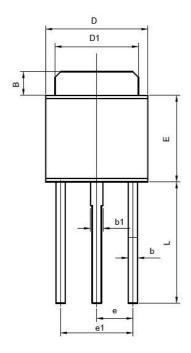




Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

MSU4N60 600V N-Channel MOSFET

Package Dimensions

	Dimensions in Millimeters		Dimensions in Inche		
Symbol	min	max	min	max	
Α	2.15	2.45	0.85	0.96	
A1	1.00	1.40	0.39	0.55	
В	1.25	1.75	0.49	0.69	
b	0.45	0.75	0.18	0.3	
b1	0.65	0.95	0.26	0.37	
С	0.38	0.64	0.15	0.25	
C1	0.38	0.64	0.15	0.25	
D	6.30	6.70	2.48	2.64	
D1	5.10	5.50	2.01	2.17	
Е	5.30	5.70	2.09	2.24	
е	2.3 (typ.)		0.91 (typ.)		
e1	4.4	4.8	1.73	1.89	
L	7.4	8.0	2.91	3.15	

Legal Disclaimer Notice

Disclaimer

ALL PRODUCT. PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.